References

Authors
Affiliations
1.
Dimitrov, D. et al. LIANA+ provides an all-in-one framework for cell-cell communication inference. Nat. Cell Biol. 26, 1613–1622 (2024).
2.
Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. Nat. Commun. 13, 3224 (2022).
3.
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).
4.
Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).
5.
Sasaki, T., Hiroki, K. & Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res. Int. 2013, 546318 (2013).
6.
7.
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
8.
Blampey, Q., Benkirane, H., Bercovici, N., Andre, F. & Cournede, P.-H. Novae: A graph-based foundation model for spatial transcriptomics data. 2024.09.09.612009 (2024) doi:10.1101/2024.09.09.612009.
9.
Duffy, A. M., Bouchier-Hayes, D. J. & Harmey, J. H. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: Autocrine signalling by VEGF. in VEGF and cancer 133–144 (Springer US, Boston, MA, 2004).
10.
Marconato, L. et al. SpatialData: An open and universal data framework for spatial omics. Nat. Methods 22, 58–62 (2025).
11.
Palla, G. et al. Squidpy: A scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).
12.
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).
13.
Barrett, T. et al. Data.table: Extension of ‘Data.frame‘. (2025).
14.
Ushey, K. & Wickham, H. Renv: Project Environments. (2024). doi:10.32614/CRAN.package.renv.
15.
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
16.
Ushey, K., Allaire, J. & Tang, Y. Reticulate: Interface to ’Python’. (2025).
17.
Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Wolf, F. A. Anndata: Access and store annotated data matrices. Journal of Open Source Software 9, 4371 (2024).
18.
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19, (2018).
19.
Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software 4, 1686 (2019).
20.
He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).
21.
22.
Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nature communications 9, (2018).
23.
Badia-i-Mompel, P. et al. decoupleR: Ensemble of computational methods to infer biological activities from omics data. Bioinformatics Advances https://doi.org/https://doi.org/10.1093/bioadv/vbac016 (2022) doi:https://doi.org/10.1093/bioadv/vbac016.