1.
Dimitrov, D. et al.
LIANA+ provides an all-in-one framework for cell-cell
communication inference. Nat. Cell Biol. 26,
1613–1622 (2024).
2.
Dimitrov, D. et al. Comparison of
methods and resources for cell-cell communication inference from
single-cell RNA-Seq data. Nat. Commun.
13, 3224 (2022).
3.
Guinney, J. et al. The consensus
molecular subtypes of colorectal cancer. Nat. Med.
21, 1350–1356 (2015).
4.
Calon, A. et al. Stromal gene
expression defines poor-prognosis subtypes in colorectal cancer.
Nat. Genet. 47, 320–329 (2015).
5.
Sasaki, T., Hiroki, K. & Yamashita, Y. The
role of epidermal growth factor receptor in cancer metastasis and
microenvironment. Biomed Res. Int. 2013,
546318 (2013).
6.
Ma,
M. et al. Prognostic
implications and therapeutic opportunities related to CAF subtypes in
CMS4 colorectal cancer: Insights from single-cell and bulk
transcriptomics. Apoptosis 30, 826–841
(2025).
7.
Hafemeister, C. & Satija, R. Normalization
and variance stabilization of single-cell RNA-seq data using regularized negative binomial
regression. Genome Biol. 20, 296 (2019).
8.
Blampey, Q., Benkirane, H., Bercovici, N.,
Andre, F. & Cournede, P.-H. Novae: A graph-based foundation model
for spatial transcriptomics data. 2024.09.09.612009 (2024) doi:10.1101/2024.09.09.612009.
9.
Duffy, A. M., Bouchier-Hayes, D. J. &
Harmey, J. H. Vascular endothelial growth factor (VEGF) and
its role in non-endothelial cells: Autocrine signalling by
VEGF. in VEGF and cancer 133–144
(Springer US, Boston, MA, 2004).
10.
Marconato, L. et al.
SpatialData: An open and universal data framework for
spatial omics. Nat. Methods 22, 58–62
(2025).
11.
Palla, G. et al. Squidpy: A scalable
framework for spatial omics analysis. Nat. Methods
19, 171–178 (2022).
12.
Hao, Y. et al. Dictionary learning for
integrative, multimodal and scalable single-cell analysis. Nat.
Biotechnol. 42, 293–304 (2024).
13.
Barrett, T. et al. Data.table:
Extension of ‘Data.frame‘. (2025).
14.
Ushey, K. & Wickham, H. Renv: Project
Environments. (2024). doi:10.32614/CRAN.package.renv.
15.
Lander, E. S. et al. Initial
sequencing and analysis of the human genome. Nature
409, 860–921 (2001).
16.
Ushey, K., Allaire, J. & Tang, Y. Reticulate:
Interface to ’Python’. (2025).
17.
Virshup, I., Rybakov, S., Theis, F. J.,
Angerer, P. & Wolf, F. A. Anndata: Access and store
annotated data matrices. Journal of Open Source Software
9, 4371 (2024).
18.
Wolf, F. A., Angerer, P. & Theis, F. J.
SCANPY: Large-scale single-cell gene expression data
analysis. Genome Biol. 19, (2018).
19.
Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source
Software 4, 1686 (2019).
20.
He,
S. et al. High-plex imaging of RNA and proteins at
subcellular resolution in fixed tissue by spatial molecular imaging.
Nat. Biotechnol. 40, 1794–1806 (2022).
21.
The
R-WASM Team. quarto-live: WebAssembly powered code blocks and
exercises for R and Python in Quarto. (2024).
22.
Schubert, M. et al.
Perturbation-response genes reveal signaling footprints in cancer gene
expression. Nature communications 9,
(2018).
23.
Badia-i-Mompel, P. et al. decoupleR:
Ensemble of computational methods to infer biological activities from
omics data. Bioinformatics Advances https://doi.org/https://doi.org/10.1093/bioadv/vbac016
(2022) doi:https://doi.org/10.1093/bioadv/vbac016.