
napari-cosmx essentials
Evelyn Metzger

2024-06-17

Contents

1 Introduction 2

2 The Example Dataset 3
2.1 Pre-processing example data . 3

2.1.1 Expected Raw Data Format . 3
2.1.2 Adding metadata . 5

3 Interacting with the GUI 6
3.1 Initial View . 7
3.2 Cell Types . 9
3.3 Niches . 9
3.4 IF Channels . 9
3.5 Transcripts . 9

4 Scripting with napari-cosmx 9
4.1 Color cells with outlines . 12
4.2 Plot transcripts with an expanded color pallette 13
4.3 Plotting genes with list comprehensions . 14
4.4 Changing transcript transparency . 15
4.5 Center to a particular FOV . 16
4.6 Plot all transcripts . 18
4.7 Changing background color . 18
4.8 Scale Bar location . 19
4.9 Specify individual cell types . 19

5 Conclusion 20

1

Figure 1: Drawing that represents the duality of napari-cosmx. On the left side, cell types
within a mouse coronal hemisphere are shown in an interactive Graphical User In-
terface. In addition to creating images interactively, the right side highlights that
images can be generated programmatically. Both sides of napari-cosmx are dis-
cussed in this post.

1 Introduction

This post is the second installment of the napari series. In the first blog post I introduced the
napari-cosmx plugin, how CosMx™ Spatial Molecular Imager (SMI) data can be viewed as
layers within napari, and a method for processing, or “stitching”, raw data that are exported
from AtoMx™ Spatial Informatics Portal (SIP).

One of the things that I love about the napari-cosmx plugin is its duality. It’s flexible enough
to quickly explore SMI data in a Graphical User Interface (GUI) yet robust enough to script
reproducible results and tap into the underlying python objects. In this post, I’ll walk through
some of the basic ways in which we can use napari-cosmxto view SMI data. I’ll make use of
this duality by sharing a combination of GUI and programmatic tips.

Note

This is not intended to be official documentation for the napari-cosmx plugin. The tips
herein are not an exhaustive list of features and methods.

• Section 2 shows how to preprocess the example dataset. If you are using your AtoMx-
exported SMI data, this section is optional

• Section 3 shows basic GUI tips for interacting with SMI data

2

../using-napari-for-cosmx-data/index.qmd

• Section 4 provides several examples of recapitulating the aesthetics seen with the GUI
as well as advanced ways we can fine-tune images and more

2 The Example Dataset

The example dataset that I am using is the mouse coronal hemisphere FFPE that is available
to download from NanoString’s website here. If you are following along with your AtoMx
exported data, you can skip most of these pre-processing steps as they are not required (but
see Section 2.1.2 if you would like to view metadata).

Note

Large memory (RAM) might be required to work with raw images. Stitching the example
data on a laptop might not work for everyone. The raw data size for this example is
183 GBs. Not all raw data are needed to stitch, however, and users can exclude the
CellStatsDir/Morphology3D folder if downloading locally. If excluding this folder, the
raw data is closer to 35 GBs.
The computer I used to stitch was an M1 Macbook Pro. Processing this 130 FOV, mouse
1K data set took about 10 minutes, ~700% CPU, and a peak memory usage of about 12
GBs (swap space was also used). The size of the napari files combined was an additional
22 GBs of disk space.

2.1 Pre-processing example data

Once downloaded, unzip the HalfBrain.zip file on your computer or external hard drive. The
format for this dataset differs from the expected AtoMx SIP export so a preprocessing step is
necessary.

When uncompressed, the raw data in the HalfBrain folder are actually nested like this:

2.1.1 Expected Raw Data Format

In order for napari-cosmx to stitch this non-AtoMx example dataset, we’ll need to rearrange
the folders so that the nested raw data are at the top level. After rearrangement, the proper
file structure should look like this:

There are a few ways to rearrange. The first method retains the original folder structure
and simply makes symbolic links to the data in the expected format. Here’s how to do it in
unix/mac (Windows not shown).

3

https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/cosmx-smi-mouse-brain-ffpe-dataset/

Listing 1 Terminal

tree -L 4

��� AnalysisResult
� ��� HalfBrain_20230406_205644_S1
� ��� AnalysisResults <-- **Raw Data Folder**
| ��� cp7bjyp7pm
��� CellStatsDir
� ��� HalfBrain_20230406_205644_S1
� ��� CellStatsDir <-- **Raw Data Folder**
� ��� CellComposite
� ��� CellOverlay
� ��� FOV001
� ��� FOV002
| ...
� ��� Morphology2D
� ��� RnD
��� RunSummary

��� HalfBrain_20230406_205644_S1
��� RunSummary <-- **Raw Data Folder**

��� Beta12_Affine_Transform_20221103.csv
��� FovTracking
��� Morphology_ChannelID_Dictionary.txt
��� Run1000_20230406_205644_S1_Beta12_ExptConfig.txt
��� Run1000_20230406_205644_S1_Beta12_SpatialBC_Metrics4D.csv
��� Shading
��� c902.fovs.csv
��� latest.fovs.csv

Alternatively, we could manually move folders. Specifically, in your Finder window, create a
folder named RawData. Then, move:

• HalfBrain/AnalysisResult/HalfBrain_20230406_205644_S1/AnalysisResults to
RawData/AnalysisResults

• HalfBrain/CellStatsDir/HalfBrain_20230406_205644_S1/CellStatsDir to
RawData/CellStatsDir

• HalfBrain/RunSummary/HalfBrain_20230406_205644_S1/RunSummary to RawData/RunSummary

Once the file structure is properly formatted, use the stitching widget method from an earlier
blog post to create the mouse brain napari files.

4

../using-napari-for-cosmx-data/index.qmd#sec-stitch-images

Listing 2 Terminal

tree -L 2

.
��� AnalysisResults
� ��� cp7bjyp7pm
��� CellStatsDir
� ��� CellComposite
� ��� CellOverlay
� ��� FOV001
� ��� FOV002
...
� ��� Morphology2D
� ��� RnD
��� RunSummary

��� Beta12_Affine_Transform_20221103.csv
��� FovTracking
��� Morphology_ChannelID_Dictionary.txt
��� Run1000_20230406_205644_S1_Beta12_ExptConfig.txt
��� Run1000_20230406_205644_S1_Beta12_SpatialBC_Metrics4D.csv
��� Shading
��� c902.fovs.csv
��� latest.fovs.csv

2.1.2 Adding metadata

We will also use the cell typing data from the Seurat file. Let’s include the following metadata
columns:

• RNA_nbclust_clusters: the cell typing results (with abbreviated names)
• RNA_nbclust_clusters_long: (optional) human-readable cell type names
• spatialClusteringAssignments: spatial niche assignments

Note that the Seurat file contains two sections of mouse brain samples. We need to filter the
metadata to include only those cells from Run1000_S1_Half. Note that when preparing the
metadata for napari, the cell ID must be the first column (i.e., see the relocate verb in the
code below).

This is R code
library(Seurat)
library(plyr)

5

Listing 3 Terminal

Terminal in Mac/Linux

cd to folder containing HalfBrain. Then,

mkdir -p RawFiles && cd $_
ln -s ../HalfBrain/AnalysisResult/HalfBrain_20230406_205644_S1/AnalysisResults .
ln -s ../HalfBrain/CellStatsDir/HalfBrain_20230406_205644_S1/CellStatsDir .
ln -s ../HalfBrain/RunSummary/HalfBrain_20230406_205644_S1/RunSummary .

library(dplyr)
sem_path will be wherever you downloaded your Seurat object
sem_path <- "/path/to/your/muBrainRelease_seurat.RDS"
sem <- readRDS(sem_path)
meta <- sem@meta.data %>%
filter(Run_Tissue_name=="Run1000_S1_Half") %>%
select(RNA_nbclust_clusters,
RNA_nbclust_clusters_long,
spatialClusteringAssignments)

meta$cell_ID <- row.names(meta) # adds cell_ID column
rownames(meta) <- NULL
meta <- meta %>% relocate(cell_ID) # moves cell_ID to first column position
write.table(meta, file="/path/to/inside/napari-ready-folder/_metadata.csv",

sep=",", col.names=TRUE, row.names=FALSE, quote=FALSE)

Now that the data are ready, drag and drop the slide folder into napari to launch the plugin.

3 Interacting with the GUI

This section focuses on features relevant to the napari-cosmx plugin. Users new to napari
may find napari’s general viewer tutorial helpful as well.

When we open a slide with napari-cosmx, by default there will be a few napari layers visible
(Initial View tab; Figure 2). These include FOV labels and Segmentation. Clicking the eye
icon next to a layer will change its visibility. Let’s turn off those layers for a moment and
visualize the cell types from the RNA_nbclust_clusters column (Cell Types tab; Figure 3).
We can also color cells by their spatialClusteringAssignments values (Niches tab; Figure 4).
In the Color Cells widget, we can control which cell types or niches we would like to view.

6

https://napari.org/stable/tutorials/fundamentals/viewer.html

When we activate the Metadata layer, hovering over a given cell will display the metadata
associated with it as a ribbon at the bottom of the application. To view the IF channels, use
the Morphology Images widget, In Figure 5 (IF Channels tab) I turned off the visibility of the
cell types, added GFAP in red and DNA in cyan, and zoomed into the hippocampus. When
I click on a layer, it becomes the activate layer and I can use the layer controls widget
to adjust attributes to that layer such as contrast limits, gamma, layer blending, and more.
Finally, we can view raw transcripts (or proteins). Simply select the target and the color and
click Add layer. In Figure 6 (Transcripts tab), I zoomed in on a section of the cortex and
plotted Calb1.

Like other programs that use layers, napari allows the layers to be moved up/down and to
blend (not shown below).

3.1 Initial View

Figure 2: The initial view of the tissue shows the location of FOVs and cell boundary layers.
Yellow arrow shows location of ipython terminal.

7

Figure 3: Same extent as Figure 2 and displaying the cell type from the
‘RNA_nbclust_clusters’.

Figure 4: Cells colored by niche

8

3.2 Cell Types

3.3 Niches

3.4 IF Channels

Figure 5: Hippocampal region of tissue with GFAP (red) and DNA (cyan).

3.5 Transcripts

To capture screenshots, simply click File > Save Screenshot.... The images above are
captured “with viewer” but that is optional.

4 Scripting with napari-cosmx

This section is for advanced users who want finer control of the aesthetics.

Most of the items we’ve covered can also be accessed through various methods in the gem object
that can found loaded in the >_ ipython interpreter (i.e., yellow arrow in Figure 2). You may
have noticed in the figures above that there was code being used to take the screenshots. Here’s
the full script that can help reproduce the figures above. I use reproducible scripts often. This

9

Figure 6: Expression of Calb1 (white dots) in cortex layer I.

is because I may want to make slight changes to a figure down the road. For example, if a
reviewer overall likes an image but asks for the cell colors to be different, I just need to change
the colors in the code and the script will pan and zoom where needed, set the IF channels and
contrasts, and reproduce other layers programmatically.

import imageio

output_path = 'path/to/store/figures'

Initial
gem.show_widget()
gem.viewer.window.resize(1650,1100)
gem.viewer.camera.center = (0.0, 0.6830708351616575, -57.16103351264418)
gem.viewer.camera.zoom = 128.0

fig_path = output_path + "/fig-initial.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

Cell types only

10

gem.viewer.layers['FOV labels'].visible = False
gem.viewer.layers['Segmentation'].visible = False

fig_path = output_path + "/fig-cell-types-short.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

Niches
gem.color_cells('spatialClusteringAssignments')
fig_path = output_path + "/fig-niches.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

IF only
gem.color_cells('RNA_nbclust_clusters')
gem.viewer.layers['RNA_nbclust_clusters'].visible = False
gem.add_channel('GFAP', colormap = 'red')
gfap = gem.viewer.layers['GFAP']

gem.add_channel('DNA', colormap = 'cyan')
dna = gem.viewer.layers['DNA']
dna.contrast_limits = [208.39669421487605, 1328.5289256198346]
dna.gamma = 1.1682758620689655

gem.viewer.camera.center = (0.0, -0.7181216373638928, -55.314605674992876)
gem.viewer.camera.zoom = 1095.856465340922
gem.viewer.layers['Segmentation'].visible = True
gem.viewer.layers['Segmentation'].opacity = 0.371900826446281

fig_path = output_path + "/fig-IF.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

Transcripts
cell_type_layer = gem.viewer.layers['RNA_nbclust_clusters']
cell_type_layer.opacity = 0.9
cell_type_layer.visible = True
gem.viewer.camera.center = (0.0, -0.009723512204714457, -59.25760232977486)

11

gem.viewer.camera.zoom = 1204.3755331686673
gem.viewer.layers['Segmentation'].visible = True
gem.viewer.layers['Segmentation'].opacity = 0.6
gem.plot_transcripts(gene = "Calb1", color = 'white', point_size=50) # I

fig_path = output_path + "/fig-transcripts.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

In practice, I use the GUI to adjust the settings (e.g., zoom, opacity) and then “jot down” the
results in my text editor. For example, when I zoom or pan to another location, that location
can be found at:

gem.viewer.camera.zoom
gem.viewer.camera.center

Similarly, the contrast limits and gamma values for IF channels can be saved as well.

dna = gem.viewer.layers['DNA']
dna.contrast_limits = [208.39669421487605, 1328.5289256198346]
dna.gamma = 1.1682758620689655

Screenshots can be done programmatically with the napari’s screenshot method and there
are additional settings you can change (e.g., just the canvas, scale) that we won’t cover here.

fig_path = output_path + "/fig-transcripts.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

There are also methods available in napari-cosmx that do not have the GUI equivalent. We
won’t be able to touch on all of these methods in this post but I want to highlight a few.

4.1 Color cells with outlines

We can plot the cell colors as boundaries instead of filled in polygons (Figure 7).

12

gem.viewer.camera.center = (0.0, -0.5375926704126319, -54.7415680001114)
gem.viewer.camera.zoom = 1371.524539264374

gfap.visible = False
dna.visible = False
gem.viewer.layers['Calb1'].visible = False
gem.viewer.layers['Npy'].visible = False
gem.viewer.layers['Targets'].visible = False

gem.viewer.camera.center = (0.0, -0.6346878790298397, -54.95271110236874)
gem.viewer.camera.zoom = 2113.6387223301786
gem.color_cells('RNA_nbclust_clusters', contour=2)

fig_path = output_path + "/fig-contours.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=True)
writer.append_data(screenshot)

Figure 7: Cells types (or other metadata items) can be represented as cell boundaries.

4.2 Plot transcripts with an expanded color pallette

The GUI offers a handful of colors to plot transcripts. We can specify which color, by name
or by hexcode, to plot. For example:

13

gem.plot_transcripts(gene = "Calb1", color = 'pink', point_size=20)

which is the same as

gem.plot_transcripts(gene = "Calb1", color = '#FFC0CB', point_size=20)

4.3 Plotting genes with list comprehensions

We can plot similar genes or targets with the same color. For example, the code that generated
Figure 8 is here.

gem.viewer.camera.center = (0.0, -0.6346878790298397, -54.95271110236874)
gem.viewer.camera.zoom = 2113.6387223301786

df = gem.targets
filtered_df = df[df.target.str.contains("NegPrb")]

pandas_df = filtered_df.to_pandas_df()
negatives = pandas_df.target.unique().tolist()
[gem.plot_transcripts(gene = x, color = "white", point_size=20) for x in negatives];

fig_path = output_path + "/fig-negatives.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

We can also supply of list of tuples where each tuple is a target and a color.

genes = [('Npy', "magenta"), ("Calb1", "white")]
[gem.plot_transcripts(gene = x[0], color = x[1], point_size=20) for x in genes];

for x in negatives:
gem.viewer.layers[x].visible = False

gem.color_cells('RNA_nbclust_clusters') # reset to filled contours
cell_type_layer = gem.viewer.layers['RNA_nbclust_clusters']
cell_type_layer.opacity = 0.9
cell_type_layer.visible = True
gem.viewer.camera.center = (0.0, -0.026937869510583412, -59.20560304046731)
gem.viewer.camera.zoom = 3820.667999302201

14

Figure 8: Same extent as Figure 7 but with negatives shown in white.

gem.viewer.layers['Segmentation'].visible = True
gem.viewer.layers['Segmentation'].opacity = 0.6

fig_path = output_path + "/fig-crowded-tx.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

4.4 Changing transcript transparency

Sometimes transcripts can be stacked on top of each other to the point that it’s difficult to
qualitatively determine the number of transcripts. Adjusting the transcript opacity of the
layer in the GUI only changes the transparency of a single point. But it’s possible to change
all points using the ipython interpreter.

gem.viewer.layers['Npy'].opacity = 0.5
fig_path = output_path + "/fig-tx-opacity.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

15

Figure 9: Cortical layer with Npy (magenta) and Calb1 (white).

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

4.5 Center to a particular FOV

While zooming (gem.viewer.camera.zoom) and panning (gem.viewer.camera.center) can
control the exact location of the camera, you can programmatically go to a particular fov with
the center_fov method.

center to fov 123 and zoom in a little (i.e., buffer > 1).
gem.center_fov(fov=123, buffer=1.2)

fig_path = output_path + "/fig-center-to-fov.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

16

Figure 10: Same extent as Figure 9 but opacity of Npy reduced from 1 to 0.5.

Figure 11: Centering to a particular FOV (123) using the center_fov method.

17

4.6 Plot all transcripts

This is not advised for resource-limited systems as it plots all transcripts. The method
add_points plots all the points for a given FOV. If no FOV is specified, it will plot all
transcripts (this can be taxing on resource-limited computers).

gem.add_points(fov=123)
gem.viewer.layers['Targets'].opacity = 0.4
fig_path = output_path + "/fig-tx-all.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=False)
writer.append_data(screenshot)

Figure 12: All targets for FOV 123.

4.7 Changing background color

For some publication styles (e.g., posters), turning the background a lighter color might be
useful. However, when changing the background, some items might be more difficult to see
(compare Figure 7 with Figure 13).

18

gem.viewer.window.qt_viewer.canvas.background_color_override = 'white'
fig_path = output_path + "/fig-white.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=True)
writer.append_data(screenshot)

Figure 13: Same extent as Figure 7 but with a white background.

4.8 Scale Bar location

To reposition the scale bar to the bottom left:

gem.viewer.window.qt_viewer.canvas.background_color_override = 'black'
gem.viewer.scale_bar.position='bottom_left'
fig_path = output_path + "/fig-scale_bl.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=True)
writer.append_data(screenshot)

4.9 Specify individual cell types

Here’s my last tip for this post. Using the color_cells method, one can choose the color of
the cell types and which cells to color by supplying a dictionary. If a cell type is not in the
supplied dictionary, it will not be shown as a color.

19

Figure 14: Same extent as Figure 7 but with a scale bar moved to the bottom left.

custom_colors = {
"MOL":"#AA0DFE",
"GN":"#85660D",
"CHO_HB":"orange" # need not be hexcode
}

gem.color_cells('RNA_nbclust_clusters', color=custom_colors)
fig_path = output_path + "/fig-color_three.png"
with imageio.get_writer(fig_path, dpi=(800, 800)) as writer:

screenshot = gem.viewer.screenshot(canvas_only=True)
writer.append_data(screenshot)

5 Conclusion

In this post I showed you some of my go-to napari-cosmx plugin features that I use when
analyzing SMI data. In my workflow, I take advantage of the plugin’s interactivity as well as
its underlying functions and methods. This comes in the form of “jotting down” settings for
reproducibility or fine-tuning an image’s aesthetics ahead of publication. I couldn’t cover all
the things this plugin can do but look for other tips in future posts.

20

Figure 15: Same extent as Figure 7 highlighting three cell types only. MOL = mature oligo-
denrocytes = purple; GN = granule neurons = brown; CHO_HB = Cholinergic
neurons Habenula = orange; cyan = all other cells.

21

	Introduction
	The Example Dataset
	Pre-processing example data
	Expected Raw Data Format
	Adding metadata

	Interacting with the GUI
	Initial View
	Cell Types
	Niches
	IF Channels
	Transcripts

	Scripting with napari-cosmx
	Color cells with outlines
	Plot transcripts with an expanded color pallette
	Plotting genes with list comprehensions
	Changing transcript transparency
	Center to a particular FOV
	Plot all transcripts
	Changing background color
	Scale Bar location
	Specify individual cell types

	Conclusion

