Comparing AtoMx™ SIP flat files with the legacy format

This short post shows differences between the AtoMx™ SIP-exported and legacy CosMx® SMI "flat files"
flat files
Author
Affiliations

Evelyn Metzger

Bruker Spatial Biology

Github: eveilyeverafter

Published

July 3, 2024

There are different data formats and structures that can be exported from the AtoMx™ Spatial Informatics Portal (SIP). These include the raw data (i.e., with CellStatsDir, RunSummary, and AnalysisResults folders), Seurat (with or without images), Tiledb, and “flat files”. The flat files get their name because they are in a human-readable and accessible format (i.e., comma separated files). These files, like Seurat files and Tiledb files, aren’t actually raw data but are processed data and can include additional analysis results (e.g., cell typing data).

The first use of the flat file format was about a year and a half ago when He et al. (2022) released the first public CosMx® SMI dataset, consisting of ~800k cells with 980 RNA targets from multiple tissues of NSCLC FFPE. Now there are additional public datasets that span two species (mouse, human), four tissues (lung, liver, brain, pancreas), and three levels of plex (1k, 6k, whole transcriptome). Because the flat files generated in AtoMx SIP differ from the flat files in these public data releases, I thought it might be helpful to show a comparison.

Specifically, in this post I compare the flat files created for Lung5_rep1 of the NSCLC dataset side-by-side with the updated (AtoMx 1.3.2) flat file format from an unrelated tissue. The specific values will be different since they are different datasets, of course, but the following side-by-sides show similarities and differences between the formats.

1 FOV positions flat file

When we compare the FOV positions between old and new, you can see that the column name ‘fov’ has been changed to ‘FOV’ and the newer format includes global positions of the FOVs in units of mm in addition to pixels.

Table 1: Description of the legacy FOV positions file format. Δ = column name change between versions
Column Name Type Description
fov\(^{Δ}\) Int The field of view (FOV) number
x_global_px float The x location (in pixels) of the FOV relative to other FOVs
y_global_px float The y location (in pixels) of the FOV relative to other FOVs

Example:

  fov x_global_px y_global_px
  1    3188.889    155216.7
  2    8661.111    155216.7
  3   14133.333    155216.7
  4   19605.556    155216.7
  5   25077.778    155216.7
  6    3188.889    158866.7
  7    8661.111    158866.7
  8   14133.333    158866.7
  9   19605.556    158866.7
  10   25077.778    158866.7
Table 2: Description of the baseline FOV file format for AtoMx SIP v1.3.2. Δ = column name change between versions; * = new column in 1.3.2 compared to legacy
Column Name Type Description
FOV\(^{Δ}\) Int The field of view (FOV) number
x_global_px float The x location (in pixels) of the FOV relative to other FOVs
y_global_px float The y location (in pixels) of the FOV relative to other FOVs
x_global_mm\(^{*}\) float The x location (in millimeters) of the FOV relative to other FOVs
y_global_mm\(^{*}\) float The y location (in millimeters) of the FOV relative to other FOVs
FOV x_global_px y_global_px x_global_mm y_global_mm
  1           0       29791   0.0000000    3.583410
  2        4255       29791   0.5119157    3.583410
  3        8511       29791   1.0238314    3.583410
  4       12767       29791   1.5357471    3.583410
  5       17023       29791   2.0476628    3.583410
  6       21279       29791   2.5595785    3.583410
  7       25535       29791   3.0714942    3.583410
  8       29791       29791   3.5834099    3.583410
  9           0       25535   0.0000000    3.071494
  10        4255       25535   0.5119157    3.071494

2 Expression Matrix

For expression matrices, we see that NegPrb(\d+) is changed to Negative(\d+) and the newer format has SystemControls.

Table 3: Description of the legacy expression matrix file format. Δ = column name change between versions
Column Name Type Description
fov Int The field of view (FOV) number
cell_ID Int Unique identifier for a single cell within a given FOV. To make a unique identifier for a cell within the whole sample use both the fov and cell_ID columns. All transcripts not assigned to a cell are show with a cell_ID value of 0.
(Gene expression target) Int The number of transcripts observed for a given gene target for a given cell.
(Negative Probe; e.g. NegPrb1)\(^{Δ}\) Int Negative probes, which do not match any sequence within the transcriptome or genome. These can be used to assess background levels.

Example:

fov cell_ID AATK ... ZFP36 NegPrb3 ... NegPrb23
  1       0   15 ...   184      12 ...       13
  1       1    0 ...     0       0 ...        0
  1       2    0 ...     1       0 ...        0
  1       3    0 ...     0       0 ...        0
  1       4    0 ...     0       0 ...        0
  1       5    0 ...     0       0 ...        0
  1       6    0 ...     0       0 ...        0
  1       7    0 ...     1       0 ...        0
  1       8    0 ...     0       0 ...        0
  1       9    0 ...     0       0 ...        0
Table 4: Description of the baseline expression matrix file format for AtoMx SIP v1.3.2. * = new column in 1.3.2 compared to legacy
Column Name Type Description
fov Int The field of view (FOV) number
cell_ID Int Unique identifier for a single cell within a given FOV. To make a unique identifier for a cell within the whole sample use both the fov and cell_ID columns. All transcripts not assigned to a cell are show with a cell_ID value of 0.
(Gene expression target) Int The number of transcripts observed for a given gene target for a given cell.
(Negative Probe, e.g., Negative1)\(^{Δ}\) Int Negative probes, which do not match any sequence within the transcriptome or genome. These can be used to assess background levels.
(System Control)\(^{*}\) Int System Control codes are codes which do not have any physical probe associated with them.

Example:

fov cell_ID A1BG ... ZZZ3 Negative1 ... Negative9 SystemControl1 ... SystemControl99
  1       1    0 ...    0         0 ...         0              0 ...               0
  1       2    0 ...    0         0 ...         0              0 ...               0
  1       3    0 ...    0         0 ...         0              0 ...               0
  1       4    1 ...    0         0 ...         0              0 ...               0
  1       5    0 ...    0         0 ...         0              0 ...               0
  1       6    0 ...    0         0 ...         0              0 ...               0
  1       7    0 ...    0         0 ...         0              0 ...               0
  1       8    0 ...    0         0 ...         0              0 ...               0
  1       9    1 ...    0         0 ...         0              0 ...               0
  1      10    0 ...    0         0 ...         0              0 ...               0

3 Metadata file

There are several differences to the metadata files between the legacy and current versions and I’ll highlight a few new additions below. One thing to note is that exported data from AtoMx SIP can have columns with analysis results in addition to the “baseline” columns.

Cell shape metrics – In the legacy version, basic cell shape was described with Area, Width, Height, and AspectRaio (Table 5). The new version of the metadata includes these plus four additional metrics that describe the cell shape (Table 6). These are perimeter, circularity, eccentricity, and solidity. Perimeter is simply the perimeter of the cell in pixels and the latter three are defined in Fu et al. (2024).

SplitRatioToLocal – for cells that are adjacent to the FOV boundaries, the SplitRatioToLocal metric measures the cell area relative to the mean area of cells in the FOVs. For 0 < SplitRatioToLocal < 1, the cell is smaller than average and for SplitRatioToLocal > 1 the cell is larger than average. Note that a value of 0 means the cell is not along the border.

FOV-level metrics – there are some columns that are added as FOV-level metrics. For example, median_RNA provides the median RNA target probe expression across all cells within a given FOV.

Table 5: Description of the legacy metadata file format. Δ = column name change between versions; * = new column in 1.3.2 compared to legacy
Column Name Type Description
fov Int The field of view (FOV) number.
cell_ID Int Unique identifier for a single cell within a given FOV. To make a unique identifier for a cell within the whole sample use both the fov and cell_ID columns.
Area Int Number of pixels assigned to a given cell.
AspectRatio float Width divided by height.
CenterX_local_px Int The x position of this cell within the FOV, measured in pixels. The pixel edge length is 120 nm. Thus, to convert to microns multiply the pixel value by 0.12028 \(\mu\)m per pixel.
CenterY_local_px Int Same as CenterX_local_px but for the y dimension.
CenterX_global_px float See CenterX_local_px description. The global positions describes the relative position of this cell within the large sample reference frame.
CenterY_global_px float Same as CenterX_global_px but for the y dimension.
Width Int Cell’s maximum length in x dimension (pixels).
Height Int Cell’s maximum length in y dimension (pixels).
Mean.(IF) Int The mean fluorescence intensity for a given cell.
Max.(IF) Int The max fluorescence intensity for a given cell.

Example:

'data.frame':   6 obs. of  20 variables:
 $ fov               : int  1 1 1 1 1 1
 $ cell_ID           : int  1 2 3 4 5 6
 $ Area              : int  1259 3723 2010 3358 1213 2647
 $ AspectRatio       : num  1.34 1.45 1.62 0.47 1 1.38
 $ CenterX_local_px  : int  1027 2904 4026 4230 4258 66
 $ CenterY_local_px  : int  3631 3618 3627 3597 3629 3622
 $ CenterX_global_px : num  4216 6093 7215 7419 7447 ...
 $ CenterY_global_px : num  158848 158835 158844 158814 158846 ...
 $ Width             : int  47 87 68 48 38 72
 $ Height            : int  35 60 42 102 38 52
 $ Mean.MembraneStain: int  3473 3895 2892 6189 8138 5713
 $ Max.MembraneStain : int  7354 13832 6048 16091 19281 12617
 $ Mean.PanCK        : int  715 18374 3265 485 549 1220
 $ Max.PanCK         : int  5755 53158 37522 964 874 5107
 $ Mean.CD45         : int  361 260 378 679 566 433
 $ Max.CD45          : int  845 1232 908 2322 1242 957
 $ Mean.CD3          : int  22 13 19 5 17 11
 $ Max.CD3           : int  731 686 654 582 674 547
 $ Mean.DAPI         : int  4979 1110 10482 6065 3311 4151
 $ Max.DAPI          : int  26374 13229 33824 39512 30136 19269
Note

If analysis has been performed on AtoMx SIP prior to export, additional columns not presented here may be added to the metadata file. For example, if cell typing has been performed, there may be a column named RNA_nbclust_[GUID]_1_clusters containing the estimated cell type.

Table 6: Description of the baseline metadata file format for AtoMx SIP v1.3.2. Δ = column name change between versions; * = new column in 1.3.2 compared to legacy
Column Name Type Description
fov Int The field of view (FOV) number.
Area Int Number of pixels assigned to a given cell.
AspectRatio float Width divided by height.
CenterX_local_px Int The x position of this cell within the FOV, measured in pixels. The pixel edge length is 120 nm. Thus, to convert to microns multiply the pixel value by 0.12028 \(\mu\)m per pixel.
CenterY_local_px Int Same as CenterX_local_px but for the y dimension.
Width Int Cell’s maximum length in x dimension (pixels).
Height Int Cell’s maximum length in y dimension (pixels).
Mean.(IF) Int The mean fluorescence intensity for a given cell.
Max.(IF) Int The max fluorescence intensity for a given cell.
SplitRatioToLocal\(^{*}\) float If cell abuts the FOV border: the ratio of Area to mean cell area for that FOV. If cell does not border the FOV boundary: 0.
NucArea\(^{*}\) Int Number of pixels assigned to a given nucleus.
NucAspectRatio\(^{*}\) float Width divided by height of nucleus.
Circularity\(^{*}\) float Area to perimeter ratio. 1 = circle; < 1 less circular (Fu et al. 2024).
Eccentricity\(^{*}\) float A cell’s minor axis divided by its major axis (Fu et al. 2024).
Perimeter\(^{*}\) Int The perimeter of the cell (in pixels)
Solidity\(^{*}\) float The Area of the cell divided by its convex area. A measure of the “density” of a cell with values < 1 indicating increased cell irregularity (Fu et al. 2024)
cell_id\(^{*}\) string A study-wide unique cell identifier. Combination of c(ell), slide_ID, fov, and cell_ID. Note that this is equivalent to cell_ID in napari-cosmx.
assay_type\(^{*}\) string The assay type (Protein or RNA)
version\(^{*}\) string The version of the target decoding used.
Run_Tissue_name\(^{*}\) string The name of the slide.
Panel\(^{*}\) string The panel that was assayed.
cellSegmentationSetId\(^{*}\). string The cell segmentation set ID.
cellSegmentationSetName\(^{*}\) string The cell segmentation set name.
slide_ID\(^{*}\) Int Unique identifier for the slide.
CenterX_global_px float See CenterX_local_px description. The global positions describes the relative position of this cell within the large sample reference frame.
CenterY_global_px float Same as CenterX_global_px but for the y dimension.
cell_ID Int Unique identifier for a single cell within a given FOV. To make a unique identifier for a cell within the whole sample use both the fov and cell_ID columns.
unassignedTranscripts\(^{*}\) float Proportion of transcripts in the FOV the cell resides in that are not assigned within any cell. This value is an FOV-level metric that is repeated for each cell (excluding cell 0).
median_RNA\(^{*}\) float FOV-level statistic. Median RNA target probe expression across all cells within a given FOV.
RNA_quantile_(proportion)\(^{*}\) float FOV-level statistic. The (proportion*100) percentile of RNA target expression across all cells within a given FOV.
nCount_RNA\(^{*}\) Int Total RNA transcripts observed.
nFeature_RNA\(^{*}\) Int Total number of unique RNA transcripts observed.
median_negprobes\(^{*}\) float FOV-level statistic. Median negative probe expression across all cells within a given FOV.
negprobes_quantile_(proportion)\(^{*}\) float FOV-level statistic. The (proportion*100) percentile of negative probe expression across all cells within a given FOV.
nCount_negprobes\(^{*}\) Int Total Negative Control Probe counts observed.
nFeature_negprobes\(^{*}\) Int Total number of unique Negative Control Probe counts observed.
median_falsecode\(^{*}\) float FOV-level statistic. Median System Control counts across all cells within a given FOV.
falsecode_quantile_(proportion)\(^{*}\) float FOV-level statistic. The (proportion*100) percentile of System Control counts across all cells within a given FOV.
nCount_falsecode\(^{*}\) Int Total System Control codes counts observed. These codes do not have a physical probe in the experiment.
nFeature_falsecode\(^{*}\) Int Total number of unique System Control codes counts observed.
Area.um2\(^{*}\) float The cell area in units of \(\mu m^{2}\)
cell\(^{*}\) string Redundant with cell_id

Example:

'data.frame':   6 obs. of  65 variables:
 $ fov                    : int  1 1 1 1 1 1
 $ Area                   : int  3037 8790 5552 5822 4008 3603
 $ AspectRatio            : num  0.67 0.95 0.77 0.9 0.97 0.88
 $ CenterX_local_px       : int  3938 2741 3888 4214 4137 4163
 $ CenterY_local_px       : int  25 52 57 73 152 187
 $ Width                  : int  76 110 96 81 78 83
 $ Height                 : int  51 104 74 90 76 73
 $ Mean.B                 : int  41 425 88 197 73 91
 $ Max.B                  : int  252 2308 952 604 552 364
 $ Mean.G                 : int  50 1270 154 48 22 26
 $ Max.G                  : int  1192 6960 4192 184 380 160
 $ Mean.Y                 : int  106 366 254 235 97 196
 $ Max.Y                  : int  1228 2864 3884 1340 828 904
 $ Mean.R                 : int  36 62 221 20 4 16
 $ Max.R                  : int  2360 1044 5604 104 60 232
 $ Mean.DAPI              : int  92 37 181 288 237 324
 $ Max.DAPI               : int  408 236 924 1060 800 928
 $ SplitRatioToLocal      : num  0.7 2.01 0 1.33 0 0
 $ NucArea                : int  1252 0 1180 2384 1284 1536
 $ NucAspectRatio         : num  0.77 0 1 0.94 0.95 0.81
 $ Circularity            : num  0.92 1.05 1.03 1.03 0.94 0.83
 $ Eccentricity           : num  0.76 0.82 0.79 0.71 0.9 0.82
 $ Perimeter              : int  204 324 260 266 231 233
 $ Solidity               : num  14.9 27.1 21.4 21.9 17.4 ...
 $ cell_id                : chr  "c_1_1_1" "c_1_1_2" "c_1_1_3" "c_1_1_4" ...
 $ assay_type             : chr  "RNA" "RNA" "RNA" "RNA" ...
 $ version                : chr  "v6" "v6" "v6" "v6" ...
 $ Run_Tissue_name        : chr  "example_tissue" "example_tissue" "example_tissue" "example_tissue" ...
 $ Panel                  : chr  "Human RNA 6k Discovery" "Human RNA 6k Discovery" "Human RNA 6k Discovery" "Human RNA 6k Discovery" ...
 $ cellSegmentationSetId  : chr  " a343598a-ed40-4a93-a655-49bc7688021d" " a343598a-ed40-4a93-a655-49bc7688021d" " a343598a-ed40-4a93-a655-49bc7688021d" " a343598a-ed40-4a93-a655-49bc7688021d" ...
 $ cellSegmentationSetName: chr  " Initial Segmentation" " Initial Segmentation" " Initial Segmentation" " Initial Segmentation" ...
 $ slide_ID               : int  1 1 1 1 1 1
 $ CenterX_global_px      : int  21057 19860 21007 21333 21256 21282
 $ CenterY_global_px      : int  68070 68043 68038 68022 67943 67908
 $ cell_ID                : int  1 2 3 4 5 6
 $ unassignedTranscripts  : num  0.0349 0.0349 0.0349 0.0349 0.0349 ...
 $ median_RNA             : int  86 86 86 86 86 86
 $ RNA_quantile_0.75      : int  126 126 126 126 126 126
 $ RNA_quantile_0.8       : int  139 139 139 139 139 139
 $ RNA_quantile_0.85      : int  157 157 157 157 157 157
 $ RNA_quantile_0.9       : int  182 182 182 182 182 182
 $ RNA_quantile_0.95      : int  240 240 240 240 240 240
 $ RNA_quantile_0.99      : num  512 512 512 512 512 ...
 $ nCount_RNA             : int  138 295 234 344 230 249
 $ nFeature_RNA           : int  86 182 152 217 148 132
 $ median_negprobes       : int  9 9 9 9 9 9
 $ negprobes_quantile_0.75: int  126 126 126 126 126 126
 $ negprobes_quantile_0.8 : int  139 139 139 139 139 139
 $ negprobes_quantile_0.85: int  157 157 157 157 157 157
 $ negprobes_quantile_0.9 : int  182 182 182 182 182 182
 $ negprobes_quantile_0.95: int  240 240 240 240 240 240
 $ negprobes_quantile_0.99: num  512 512 512 512 512 ...
 $ nCount_negprobes       : int  0 0 1 0 0 0
 $ nFeature_negprobes     : int  0 0 1 0 0 0
 $ median_falsecode       : int  4 4 4 4 4 4
 $ falsecode_quantile_0.75: int  126 126 126 126 126 126
 $ falsecode_quantile_0.8 : int  139 139 139 139 139 139
 $ falsecode_quantile_0.85: int  157 157 157 157 157 157
 $ falsecode_quantile_0.9 : int  182 182 182 182 182 182
 $ falsecode_quantile_0.95: int  240 240 240 240 240 240
 $ falsecode_quantile_0.99: num  512 512 512 512 512 ...
 $ nCount_falsecode       : int  1 0 0 1 1 1
 $ nFeature_falsecode     : int  1 0 0 1 1 1
 $ Area.um2               : num  43.9 127.2 80.3 84.2 58 ...
 $ cell                   : chr  "c_1_1_1" "c_1_1_2" "c_1_1_3" "c_1_1_4" ...

4 Transcript coordinates file

Main differences between versions:

  • The contents of the CellComp column differ between version. In the current version “None” replaces “0”. The other three regions–Membrane, Nuclear, Cytoplasm–are unchanged.
  • cell column is added to the newer version.
Table 7: Description of the legacy transcripts file format. ‡ = contents changed between versions
Column Name Type Description
fov Int The field of view (FOV) number.
cell_ID Int Unique identifier for a single cell within a given FOV. To make a unique identifier for a cell within the whole sample use both the fov and cell_ID columns.
x_global_px float The x position (in pixels) relative to the tissue.
y_global_px float The y position (in pixels) relative to the tissue.
x_local_px float The x position (in pixels) relative to the given FOV.
y_local_px float The y position (in pixels) relative to the given FOV.
z Int The z plane.
target string The name of the target.
CellComp‡ string Subcellular location of target.

Example:

fov cell_ID x_global_px y_global_px x_local_px y_local_px  z  target CellComp
  1       0    6757.402    158836.4   3568.513  3619.7375 11   NEAT1        0
  1       0    5111.389    156060.2   1922.500   843.5334 11   NEAT1        0
  1       0    7860.461    157809.3   4671.572  2592.6715 11    CCR2        0
  1       0    3790.489    155553.9    601.600   337.2168 11 HLA-DRA        0
  1       0    3290.639    158023.6    101.750  2806.9750 11 HLA-DRA Membrane
  1       0    7020.160    158656.3   3831.271  3439.6000 11     VHL        0
  1       0    4252.914    157003.0   1064.025  1786.3376 11    FZD5  Nuclear
  1       0    5987.309    157572.5   2798.420  2355.8000 11    CD37        0
  1       0    5586.849    157774.2   2397.960  2557.5599 11   ATG12 Membrane
Table 8: Description of the baseline transcripts file format for AtoMx SIP v1.3.2. * = new column in 1.3.2 compared to legacy; ‡ = contents changed between versions
Column Name Type Description
fov Int The field of view (FOV) number.
cell_ID Int Unique identifier for a single cell within a given FOV. To make a unique identifier for a cell within the whole sample use both the fov and cell_ID columns.
cell\(^{*}\) string A study-wide unique cell identifier. Combination of c(ell), slide ID, fov, and cell_ID. Note that this is equivalent to cell_ID in napari-cosmx.
x_local_px float The x position (in pixels) relative to the given FOV.
y_local_px float The y position (in pixels) relative to the given FOV.
x_global_px float The x position (in pixels) relative to the tissue.
y_global_px float The y position (in pixels) relative to the tissue.
z Int The z plane.
target string The name of the target.
CellComp‡ string Subcellular location of target.

Example:

 fov cell_ID        cell       x_local_px y_local_px x_global_px y_global_px   z   target  CellComp
  30    4755 c_1_30_4755 29337.6332465278   173483.2   4259.8555    16.57764   3      B2M Cytoplasm         
  30    4755 c_1_30_4755 29340.4174262153   173488.4   4262.6396    21.71997   3   COL3A1 Cytoplasm         
  30    4757 c_1_30_4757 29593.4975043403   173480.9   4515.7197    14.27002   8    RPL32 Cytoplasm         
  30    4759 c_1_30_4759 25211.3444434272   173477.6    133.5667    10.95020   6   COL1A1 Cytoplasm         
  30    4759 c_1_30_4759 25224.5611029731   173483.9    146.7833    17.28320   6   COL1A2 Cytoplasm         
  30    4760 c_1_30_4760 25902.6278143989   173480.8    824.8500    14.11694   7   TPSAB1 Cytoplasm         
  30    4760 c_1_30_4760 25924.0527411567   173477.8    846.2750    11.10010   1 HSP90AB1 Cytoplasm         
  30    4760 c_1_30_4760 25925.7694159614   173478.0    847.9916    11.34155   6     GLUL Cytoplasm         
  30    4760 c_1_30_4760 25914.4152899848   173478.9    836.6375    12.27515   6   ADGRE2 Cytoplasm         
  30    4760 c_1_30_4760 25902.9277411567   173480.7    825.1500    14.07520   8   TPSAB1 Cytoplasm   

5 Polygons file

The polygons file was added to the list of flat files and shows the vertices of each cell’s polygon.

(Not applicable)

Table 9: Description of the baseline polygons file format for AtoMx SIP v1.3.2.
Column Name Type Description
fov Int The field of view (FOV) number.
cell_ID Int Unique identifier for a single cell within a given FOV. To make a unique identifier for a cell within the whole sample use both the fov and cell_ID columns.
cell string A study-wide unique cell identifier. Combination of c(ell), slide ID, and cell_ID. Note that this is equivalent to cell_ID in napari-cosmx.
x_local_px float The x position (in pixels) of vertex relative to the given FOV.
y_local_px float The y position (in pixels) of vertex relative to the given FOV.
x_global_px float The x position (in pixels) of vertex relative to the tissue.
y_global_px float The y position (in pixels) of vertex relative to the tissue.

Example:

This example below shows the vertices of cell c_1_2_3.

  fov cellID    cell x_local_px y_local_px x_global_px y_global_px
  2      3 c_1_2_3        279          0        4535       29792
  2      3 c_1_2_3        279          1        4535       29791
  2      3 c_1_2_3        270         15        4526       29777
  2      3 c_1_2_3        266         20        4522       29772
  2      3 c_1_2_3        234         53        4490       29739
  2      3 c_1_2_3        223         64        4479       29728
  2      3 c_1_2_3        214         71        4470       29721
  2      3 c_1_2_3        210         72        4466       29720
  2      3 c_1_2_3        199         72        4455       29720
  2      3 c_1_2_3        186         66        4442       29726
  2      3 c_1_2_3        182         64        4438       29728
  2      3 c_1_2_3        179         62        4435       29730
  2      3 c_1_2_3        176         31        4432       29761
  2      3 c_1_2_3        176          4        4432       29788
  2      3 c_1_2_3        179          0        4435       29792

References

Fu, Xiaohang, Yingxin Lin, David M. Lin, Daniel Mechtersheimer, Chuhan Wang, Farhan Ameen, Shila Ghazanfar, Ellis Patrick, Jinman Kim, and Jean Y. H. Yang. 2024. “BIDCell: Biologically-Informed Self-Supervised Learning for Segmentation of Subcellular Spatial Transcriptomics Data.” Nature Communications 15 (January): 509. https://doi.org/10.1038/s41467-023-44560-w.
He, Shanshan, Ruchir Bhatt, Carl Brown, Emily A Brown, Derek L Buhr, Kan Chantranuvatana, Patrick Danaher, et al. 2022. “High-Plex Imaging of RNA and Proteins at Subcellular Resolution in Fixed Tissue by Spatial Molecular Imaging.” Nature Biotechnology 40 (December): 1794–1806. https://doi.org/10.1038/s41587-022-01483-z.